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Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic
electron beam with a very high current density exceeding 1012 A cm−2. The propagation of such a beam inside
the target is possible if its current is neutralized. This phenomenon is not well understood, especially in
dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic
target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of
newborn electrons. The numerical results are compared with a relatively simple analytical model and a rea-
sonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density
profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam
density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by
the self-generated electric field and the return current. For the highest beam density, a two-stream instability is
observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.
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I. INTRODUCTION

In recent years, generation of high current relativistic
electron beams in short-pulse high intensity laser interactions
with solid targets and the propagation of these beams in
dense matter have been studied both theoretically �1,2� and
experimentally �3–5�. One of the important applications of
laser-produced relativistic electron beams is the fast ignition
approach to the inertial confinement fusion �6�. A number of
physical processes may dissipate energy of the electron beam
or inhibit its collimated propagation into the dense target
core. This would limit the quality or position of the energy
deposition. The processes associated with the return current
are among the most important ones. These are the filamen-
tation, the Weibel, and the two-stream instabilities �7,8�. Re-
cently, the ionization instability associated with high current
electron beam propagation in nonconducting materials has
been identified �9,10�.

The ionization is an important process in the propagation
of relativistic electron beam in dielectric material as it pro-
vides free charges for the beam charge and current neutral-
ization. Three ionization processes may contribute to in-
crease the number of free electrons. Namely, the collisional
ionization by the beam electrons, the ionization by the self-
consistent electric field, and the collisional ionization by the
return current electrons. The energy of newborn electrons is
as low as several eV initially and therefore they form a sepa-
rate population distinct from the beam electrons. These cold
electrons form the return current which is highly collisional.

Theoretical models describing the ionization processes in-
duced by high current electron beam in dielectric targets
have been discussed recently in �9,11�. In particular, the ef-

fect of the field ionization in the head of the electron beam
was identified as a dominant process which defines the ef-
fective velocity of the beam propagation and its energy
losses.

The complexity of the beam electron distribution func-
tion, the nonlinearity of ionization processes, and the transi-
tion of the initially cold neutral material into a dense warm
plasma make it difficult to describe the whole process of
beam propagation using only analytical models. The numeri-
cal simulations provide important information here. More-
over, when the laser pulse duration is of the order of tens of
femtoseconds, the beam length is so short that the asymptotic
approach frequently used in the theoretical analysis might
not be completely appropriate.

However, complete kinetic simulations of the beam
propagation are not yet accessible because of a large dispar-
ity between the densities and the electron energies of the
beam and the solid material. The recently developed hybrid
models �12–14� treat cold electrons in a fluid approximation
and ignore the electrostatic fields, which develop on the De-
bye scale length. This might be appropriate for metals but is
not sufficient for dielectrics. Here we present a fully kinetic
simulation model based on the particle-in-cell �PIC� algo-
rithm adapted for studies of the fast electron beam propaga-
tion in a solid density plastic material. This model is de-
scribed in detail in Sec. II. To keep the computational cost of
the simulations on a reasonable level, some simplifying as-
sumptions are made. Their validity is discussed there. In Sec.
III, we present a quasistationary analytical model which de-
scribes the electric field structure and the ionization pro-
cesses induced by the beam. It applies the results obtained in
previous publications �9,11� to the specific fast electron dis-
tribution function used in simulations and accounts also for
the plasma electron heating, the collisional ionization, and
the electron beam instability. The results of the simulations
and their comparison with the analytical model are discussed*Electronic address: klimo@watt.fjfi.cvut.cz
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in Sec. IV. Finally, in Sec. V, we summarize the main results
of this paper and present our concluding remarks.

II. NUMERICAL MODEL

To simulate electron beam propagation in dielectric tar-
gets, we use a relativistic electrostatic PIC code in one spa-
tial dimension and in three dimensions in the phase space. It
evolved from the electromagnetic code LPIC++ �15�. The
original code was modified to account for additional physical
effects. The beam and plasma electrons are treated as sepa-
rate species. Since the collisions of fast electrons are ne-
glected, we keep only one velocity component of the beam
particles and we take into account only the electric field
component in the direction of the beam propagation. The
neutral atoms and ions are treated as an immobile stationary
background. This crucial simplification is justified by two
arguments: First, the amplitude of the self-consistent electric
field remains always well below the atomic field; second, its
existence in any particular place is temporally limited to the
duration of the ionization front, which is not more than ten
fs. Therefore, the atoms and ions intervene only in the ion-
ization and the collisional parts of the code.

The simulation box consists of two spatial regions of dif-
ferent solid density materials. The first one is the injection
region—a thin aluminum foil, where the electron beam is
initiated. It is followed by the propagation region composed
of plastic �polyethylene�. The length of the injection layer is
equal to the beam length, which is 8 �m in the examples
presented below, and it contains both cold and beam elec-
trons. The number density of cold electrons is 1.8
�1023 cm−3, corresponding to the solid density aluminum
with three free electrons per ion. The initial electron tem-
perature of cold aluminum electrons is set to 50 eV. The
beam electrons are distributed among the cold ones and they
are assigned a velocity, uniformly distributed between 0.7
and 0.9 speed of light, in the beam propagation direction.
The density of electrons in the beam is also initially uniform
along the propagation direction except for the first and the
last micron where it linearly increases or decreases, respec-
tively. As the density of the beam in this study, 1018–
1020 cm−3, is much lower than that of solid aluminum and as
the number of beam electrons is desired to be high enough to
have a good statistics of their distribution function and a
smooth profile of the electric field, we initiate these electrons
with a lower numerical weight and keep the number of mac-
roparticles comparable for cold and hot electrons.

The size of the computational cell as well as the time step
used in the simulation should be proportional to the electron
Debye length which depends on the electron density and
temperature. The Debye length in a real low temperature
solid density aluminum plasma is about 0.1 nm which is be-
yond our available computational resources. However, what
happens in the aluminum layer is not important in our study
except for a short time at the beginning until the beam leaves
it. Moreover, the plasma, which develops during the beam
propagation in plastic, is of lower density. For these reasons,
we consider a higher initial electron temperature in Al, about
50 eV, and we are using the cell size of 1 nm. In the future,

it would be possible to implement a more sophisticated
weighting algorithm for field interpolation and current den-
sity assignment to the cells into our code. This would allow
us to avoid a numerical heating. Nevertheless, the present
calculations provide a sufficient accuracy. The total energy in
the simulation box does not deviate from the initial value
more than 1% during the whole simulation. The plastic layer
is usually 50 �m long and it contains only neutral atoms
initially. The two most important processes which take place
in this part of the simulation box during the electron beam
propagation, the ionization, and the collisions of newly pro-
duced cold electrons, are described next.

A. Ionization

According to our initial conditions and to estimates on the
importance of individual ionization processes during the fast
electron beam propagation in dielectrics �11�, ionization by
the electric field significantly dominates collisional ioniza-
tion by the beam electrons at the head of the beam. The
collisional ionization by the beam electrons is therefore ne-
glected in our model. On the other hand, the collisional ion-
ization by the return current electrons is indeed very impor-
tant. The field ionization at the head of the beam creates a
seed population of free electrons which gain their energy
from the electric field. The kinetic energy of the newborn
free electrons rapidly overcomes the threshold for collisional
ionization and the population of free electrons increases fur-
ther several times. If the collisional ionization by the return
current electrons is not taken into account, the resistivity of
plasma generated in the plastic target is too high and the
beam energy is dissipated by the Ohmic heating rapidly. As
we are dealing with simulation times of the order of tens of
femtoseconds and the neutral target is usually not completely
ionized during this time, the complementary process of three
body recombination has been omitted.

1. Electric field ionization

The field ionization process is included in the PIC code
using a Monte Carlo algorithm �16�. To calculate the ioniza-
tion rate, we use the formula derived by Ammosov, Delone,
and Krainov �ADK� �17�

wfi�E� = �a�Ea

E
�b

exp�− a
Ea

E
� , �1�

where E is the local electric field and the other parameters
characterizing the target material are

�a = 1.61�a.u.Z
2/neff

4.5, Ea = 10.87Ea.u.Z
3/neff

4 ,

b = 2neff − 1.5, a = 0.0613neff.

Here Ea.u.=e /4��0aB
2 =514 kV/�m is the atomic electric

field, �a.u.=eEa.u.aB / � =41 fs−1 is the atomic frequency, aB
=4��0�2 /mee

2 is the Bohr radius, Z is the ion charge seen by
the electron being released, neff=Z�UH /Ui is the main effec-
tive quantum number, Ui is the ionization potential of the
corresponding ion, and UH= �1/2�eEa.u.aB=13.6 eV is the
ionization potential of hydrogen.
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We assume that only the outermost shell of carbon atoms
can be ionized �Z=1� and for the ionization potential we use
an average value between carbon and hydrogen, Ui
=12.8 eV. This approximation seems to be quite reasonable
because the dependence of the ionization probability on the
ionization potential is highly nonlinear and secondary ioniza-
tion does not set up. The simulation results do not depend on
the ionization potential if we vary it in the domain between
the values for carbon and hydrogen. The field in our simula-
tions is always lower than the critical field at which the bar-
rier suppression ionization sets up �18�. Therefore, applica-
tion of the ADK tunneling ionization rate is valid.

The difference in the numerical weight of the beam and
cold electrons must not be too big, otherwise a single cold
electron would affect the electric field too much. On the
other hand, the number of new free electrons per simulation
cell is limited by the computational performance. As we will
show later, the final ionization state of the initially neutral
plastic target depends on the beam density. Roughly, the den-
sity of the plasma created by the beam is 1000 times higher
than the beam density. Consequently, we are using 4000,
1000, and 400 cold electrons per simulation cell to represent
a singly ionized solid density plastic �polyethylene� for the
beam densities 1018, 1019, and 1020 cm−3. Then the number
of cold electrons per simulation cell in plasma behind the
beam is usually in the reasonable range of values between 70
and 400.

We recall here that in our simulations atoms and ions are
treated as immobile and they serve only to provide an appro-
priate resolution for sampling the ionization probability. Us-
ing the same number of atoms per cell as the number of cold
electrons would impose unnecessary constrains on the com-
putational performance. For this reason, we use just 200
equally spaced atoms per cell in every simulation and let
each of these atoms be ionized several times, strictly speak-
ing 20, 5, and 2 times, with the same ionization potential.
The atoms “remember” how many times they were already
ionized and when the ionization probability for the electric
field ionization is calculated, it is always multiplied by the
number of electrons that can still be released from the corre-
sponding atom. If the ionization takes place, a new electron
is injected into the simulation box at the corresponding place
and it is initiated with velocity sampled from the Maxwellian
distribution with temperature 7 eV. The nonzero initial ve-
locity does not affect much the overall energy balance but it
is essential for the collisional algorithms.

The energy spent for ionization is subtracted from the
field using an artificial ionization current. This current is di-
rected along the electric field and its amplitude is given by
jion=Wion /E, where Wion is the energy spent on ionization per
unit volume and unit time step. Before the ionization takes
place we always ensure that the field still has enough energy
to ionize another atom and, if not, the ionization process is
suppressed. In our simulations, the part of the field energy
spent into ionization is indeed important. In the runs where
the ionization current was neglected, the field amplitude and
correspondingly the number of new free electrons at the head
of the beam were significantly higher.

2. Collisional ionization

The collisional ionization is implemented in the code us-
ing a Monte Carlo approach too. The probability that an

electron ionizes an atom during the time step of �t is calcu-
lated as Pci=1−e−�ci�t, with �ci being the frequency of colli-
sional ionization. This frequency is calculated for every elec-
tron as

�ci = vena	ci, �2�

where ve is the electron velocity, na is the number density of
atoms that can be ionized, and 	ci is the cross section for
electron impact ionization. This cross section is calculated
using an analytical fit to the Bethe binary encounter cross
section �19� for the ionization of polyethylene. Currently, we
assume that only the outermost shell of carbon atoms can be
ionized. This assumption is valid for the beam densities be-
low 1020 cm−3. For higher densities it is not exactly correct,
as at the rear part of the beam the single ionization is almost
completed, while the temperature of cold electrons is suffi-
ciently high for the secondary ionization of carbon atoms.
This assumption could be easily corrected in the future; how-
ever, we are not considering such very high beam densities
here.

When the collisional ionization takes place, we choose
randomly an atom which will be ionized in the same cell and
release an electron. It is injected into the simulation box in
the same place as the atom with the energy randomly
sampled from the Maxwellian distribution with temperature
2 eV. The ionization energy and the kinetic energy of the
released electron are both subtracted from the kinetic energy
of the electron that ionized the atom. The collisional ioniza-
tion leads to plasma cooling as a counterpart of the joule
heating by the return current.

B. Collisions

As most of the collisional algorithms for PIC codes are
computationally very expensive, we are not using collisions
for every species of particles. All ions and atoms are immo-
bile and therefore collisionless. Moreover, we assume their
temperature to be low during the beam propagation and
therefore they are having zero velocities. The beam electrons
are also considered as collisionless, as it was explained in the
beginning of this section. The cold electrons in aluminum are
highly collisional but the aluminum layer is included just to
provide initial conditions for the fast electrons and to avoid
the beam disruption at the boundary between the two mate-
rials. Therefore, there is no need to know their distribution
function exactly. They have initially a Maxwellian distribu-
tion and the joule heating in aluminum is insufficient to heat
them up or to change their distribution significantly. How-
ever, their collisions must be taken into account to damp the
oscillations at plasma frequency that are otherwise present.
We treat their collisions with ions with a constant collisional
frequency of 2 fs−1. This value is realistic and it is sufficient
to damp the oscillations, but does not inhibit the return cur-
rent in aluminium. Therefore the cold electrons in plastic is
the only species for which collisions are essential and must
be treated carefully.

1. Elastic electron-atom scattering

Collisions are included into the code using a Monte Carlo
approach �20�. This algorithm is suitable for both types of
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collisions—the collisions of electrons with neutral atoms and
the Coulomb collisions with ions and other cold electrons.
Collisions with neutral atoms play the most important role at
the front of the electron beam, where electron and ion den-
sities and also the Coulomb collision frequency are low. If
collisions with neutral atoms are not included, cold electrons
would gain too high velocity from the field just after ioniza-
tion and the electric field behind the ionization front starts to
oscillate at the plasma frequency. Because of higher veloci-
ties, electrons are less collisional during the whole simula-
tion in this case and plasma oscillations are damped only
slowly. The frequency of collisions with neutral atoms is
calculated using the total cross section for elastic electron
scattering in plastic �polyethylene� as �en=venm�	C+2	H�,
where nm is the number density of CH2 molecules, which is
initially 0.3�1023 cm−3, and 	C and 	H are the total cross
sections for elastic scattering with carbon and hydrogen, re-
spectively. For electron energies above 100 eV, we use the
values for 	C and 	H from �21� which are calculated using
the Dirac partial wave method with screened potentials ob-
tained from Dirac-Hartree-Fock atomic electron densities. As
there are no precise data for the energy range below 100 eV,
we suppose that the collisional frequency is constant there.
The value of this frequency is 5 fs−1 for the neutral plastic.
This assumption is not too restrictive since it takes 0.16 fs
for a 10 eV electron to fly from one atom to another. There-
fore the maximum collisional frequency cannot be more than
6 fs−1. The collisional frequency slowly decreases for ener-
gies above 100 eV. For example, the frequency is 4 fs−1 for
a 300 eV electron. The correctness of our Monte Carlo ap-
proach for such high collisional frequencies is guaranteed by
a very short simulation time step of the order of 10−3 fs.

The angular shape of the effective cross section of
electron-atom collisions used here depends on the electron
energy and has the following form:

d	en

d cos 

=

	T�

4��1 + � sin2�
/2��ln�1 + ��
, �3�

where 
 is the deflection angle, � is the electron kinetic
energy in eV, and 	T is the corresponding integral cross sec-
tion for the carbon and hydrogen. This analytical expression
was used to describe the screened Coulomb collisions in �22�
and it captures the main features of electron-neutral scatter-
ing: It is approximately isotropic at low energies and it be-
comes increasingly anisotropic as the energy increases.

The probability of elastic collision with an atom was
sampled for each electron at each time step. The details
about random sampling of the deflection angle and calcula-
tion of postcollision velocities of electrons are given in the
Appendix.

2. Coulomb collisions

The Coulomb electron-ion and electron-electron colli-
sions set up behind the ionization front where the density of
free electrons and ions is high enough. They are treated here
as binary collisions using the same collisional algorithm
�20�. Electrons collide in pairs; in electron-ion collisions we
use again the assumption of static scattering centers. There-

fore, there is no need to group ions in pairs with electrons.
The validity of this algorithm for simulation of Coulomb
collisions in plasma was proved by its first order correspon-
dence to solving the Landau-Fokker-Planck collisional inte-
gral �23�. In comparison with electron-neutral collisions, the
main difference is that these collisions take place for every
electron every time step and the deflection angle between
precollision and postcollision velocities depends on the col-
lisional frequency.

The angular dependence of scattering due to the Coulomb
collisions into an angle 
 is given as

d	e

d cos 

=

A	e

2�
e−A�1−cos 
�, �4�

where the factor A�1/�e�t�1 accounts for the finite time
step. The value of Spitzer collisional frequency �e depends
on the local cold electron density and electron velocity. In
practical units �e=1.6�106neve

−3 s−1, where the electron ve-
locity is in m/s and the electron density is in m−3. In our code
the electron collisional frequency was kept in the range 1–
1000 ps−1.

The procedures of random sampling of the distribution for
the deflection angle and calculation of postcollision veloci-
ties are described in the Appendix.

III. ANALYTICAL MODEL OF THE BEAM PROPAGATION

The propagation of the ionization front induced by the
electron beam is described within a simplified one-
dimensional model. It is inspired by the previous publication
�9�. However, the distribution function for fast electrons is
different. A more detailed kinetic analysis of the beam in the
ionization front enables us to highlight several physical
mechanisms important in the beam propagation. The energy
losses of the beam electrons due to the self-consistent elec-
tric field in the ionization front and in the beam tail are
analyzed as well as the plasma heating. Moreover, as the
density of the beam in our paper is higher than in �9�, the
ionization by the self-consistent electric field is the dominant
ionization mechanism in the beam front.

The propagation model can be described as follows. The
electron beam penetrates the neutral plastic target and creates
an electric field along its propagation direction. This electric
field slows down the beam electrons, while reaching values
sufficiently high to ionize the matter. The thermal electrons
spawning from ionization propagate backward and neutralize
the charge and the current of the electron beam behind the
ionization front. The total current becomes sufficiently low
to allow the rest of the beam to propagate through.

The analytical model assumes a quasistationary propaga-
tion where all parameters vary slowly in the reference frame
of the ionization front. It divides the electron beam into two
parts. The beam head �or the ionization front� where the
matter is supposed to be ionized by the electric field, and the
beam body behind the ionization front where the current neu-
tralization has been set up. In the first part of this section we
will describe the beam front characteristics and particularly
the front velocity which depends on the beam density and the
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current. The collisional ionization, which takes place in the
beam tail, will be considered after that.

It is important to make a distinction between the maxi-
mum electron velocity, vmax, and the velocity of the ioniza-
tion front v f which can be regarded as a mean propagation
velocity of the beam. Following �9�, the structure of the ion-
ization front can be better described in the front reference
frame. Similarly to simulations the injected beam distribu-
tion function is a constant in the interval �v=vmax−vmin be-
tween the minimum vmin and the maximum vmax velocities.
In the momentum space, px=�mevx, with the electron rela-
tivistic factor, �= �1−vx

2 /c2�−1/2, the distribution function of
the beam can be written as

fb�px� =
nb0

�v
H�pmax − px�H�px − pmin�

dvx

dpx
, �5�

where H is the Heaviside step function. Assuming that the
beam electrons are nonrelativistic in the front reference
frame, one has dvx /dpx�1/me� f

3, where � f = �1−v f
2 /c2�−1/2.

A. Velocity of the ionization front

The fast electrons are described by the stationary Vlasov
equation

vx�
� fb�

�x�
− eE

� fb�

�px�
= 0, �6�

which gives the beam distribution function fb��me��c2−e
�
with the electric field E=−d
 /dx� and ��=�p�2 /me

2c4+1.
The prime indicates the front reference frame. The electric
field is described by the Poisson equation

�0
dE

dx�
= e�ni� − ne� − nb�� , �7�

where nb�, ne�, and ni� are the densities of the beam electrons,
the cold electrons, and the ions, respectively. They are de-
fined by the continuity equations

− v f

dni�

dx�
=

d�ne��ue� − v f��
dx�

= wfina, �8�

where we suppose a weak ionization, na�ni. The electric
field ionization rate wfi is described by the ADK formula �1�.
The cold electron velocity ue� is defined by the mobility equa-
tion and the electron collision frequency �e is supposed to be
constant in the analytical model. In the front reference frame
this equation reads

ue� = − eE/me� f
2�e. �9�

From Eqs. �8� and �9� one finds the charge separation �n�
=ni�−ne�=ni�ue� /v f.

The electric field is always positive, therefore the poten-
tial decreases monotonously from the beam source �
=0� to
its head �
=
min�. Then the governing equations can be fur-
ther simplified by considering the dimensionless electric field
potential �=e
 /mec

2 as an independent variable �9�

�0E
dE

d�
= mec

2�nb���� −
eE

me� f
2�ev f

ni�� , �10�

dni�

d�
=

mec
2nawfi

ev fE
. �11�

Only electrons moving with velocity higher than v f can pen-
etrate the front. Therefore, only these electrons contribute to
the field formation. These electrons slow down in the front,
turn around, and finally come back. The fastest ones reach
the minimum potential �min=−��max� −1�. The electron rela-
tivistic factor in the front frame is given by the Lorentz trans-
formation �max� =� f��max−� f

��max
2 −1�. Thus the distribution

function in the beam head is even in the front reference
frame. The formula for the beam density, nb����=	f���
−��dp�, reads

nb���� 

2nb0c

�v� f
3
�2�� − �min� . �12�

The field ionization rate �1� is a very sharp function of the
electric field. Therefore, the plasma density increases very
quickly and the right-hand side of the Poisson equation
changes its sign when the electric field reaches its maximum.
The maximum value of the electric field, Em, at the point �m
follows from the Poisson equation �10�

eEm = me�ev f� f
2nb���m�/ni���m� . �13�

Near this maximum the electric field can be approximated as
a quadratic function �9�

E��� = Em −
�E

2
�� − �m�2, �14�

where

�E 

mec

2na

�0Em�e� f
2� f

2wfi�Em� . �15�

Here the derivative of the beam density is neglected because
at this point it is weakly perturbed. This approximation for
the electric field allows one to integrate Eqs. �10� and �11�
between �min and �m and obtain the expressions for Em and
ni��m�

�0Em
2 =

8�2

3

nb0mec
3

� f
3�v

��max� − 1�3/2,

ni���m� =
�0�e� f� f

2Em

ec
� ��E

2aEa
. �16�

In the integration of the Poisson equation the contribution of
the plasma density was neglected.

One has to know the beam density nb���m� in order to
resolve these equations and to find the front velocity. Assum-
ing that the beam losses behind the front are relatively small
one can make an approximation nb���m�
nb��0�. Then from
Eqs. �13�, �16�, and �17�, the front velocity v f is defined as

nb0 = � aEa

�1 + b�G
W�− 1,

aEa

�1 + b�L4G4�1/�1+b��2

, �17�

where
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G�v f� =�8�2mec
3

3�0� f
3�v

��max� − 1�3/4, �18�

L�v f� =
16ame�ec

2v f
2��max� − 1�

��0�anaEa
b−1� f

5�v2 �19�

and W�−1,x� is the Lambert W function defined on the in-
terval �−e−1 ,0� as an inverse of xex. Knowing the front ve-
locity, one can find the maximum of the electric field Em
from Eq. �16� and the maximum plasma density after ioniza-
tion ni max� 
2ni���m� from Eq. �17�. The field ionization
takes place in the vicinity of �m, where the electric field
achieves its maximum.

One can also define the thickness of the front �xf as a
distance between the head of the beam and the maximum of
the electric field. Here the electric charge is accumulated in
order to ionize the matter. Integrating Eq. �10� over ��min,��
one finds E���=Em�1−� /�min�3/4 which gives the potential
distribution in the front

�/�min = 1 − �1 − x�/�xf��
4. �20�

Then the following formula for the front thickness �xf
=�xf� /� f can be derived:

�xf =
4mec

2

eEm� f
��max� − 1� . �21�

For the parameters of our simulations, it is of the order of a
few �m.

In the front reference frame the electric field structure is
stationary and therefore its energy does not change in time.
However, the dissipated energy is nonzero in the laboratory
frame for two reasons. First, the current in the ionization
front is nonzero, jbf=enb�v f� f, and therefore there is the joule
dissipation across the front, jbf
max� /� f. Second, one should
take into account the energy spent for the ionization �11�,
which is ni maxUi. Here ni max=2ni���m� /� f is the ion density
behind the ionization front. Then the energy dissipation rate
in the ionization front Wbf can be expressed as

Wbf = ni maxUiv f + nb�v fe

min� 
 . �22�

Although this is a relatively small part of the beam energy
flux, qb�nbvmaxmec

2��max−1�, one should be aware that
these are the electrons in the front that are suffering this
dissipation and after losing a substantial part of their energy,
they are falling back and are substituted by fresh electrons
from the tail. This energy redistribution is clearly seen in the
simulations.

The dependencies of the ionization front characteristics
on the electron beam density for the parameters used in the
simulations are shown in Fig. 1. The front velocity increases
with the beam density. For the beam densities below
1018 cm−3, it becomes smaller than the minimum beam ve-
locity and our quasistationary model is no longer valid. The
front thickness is a decreasing function of nb0. The maximum
electric field very weakly depends on the beam density. It is
of the order of 5% of the atomic field Ea.u.. The maximum
ion density 2ni��m� is about 100 times higher than the beam
density but still even at high beam densities the ionization in
the front is always incomplete �11�. This comes from the fact
that even a small number of newborn electrons quickly
screens the electric field and the ionization process is sup-
pressed.

Knowing the profile of the potential �20�, one can check
the validity of our hypothesis about the stationary ionization
front. The relaxation time to reach this quasistationary state
is the time for an electron to cross the ionization front, �tr
�	dx /vb�x�. It follows from the electron equation of motion
that tr=2� f

3/2�me�xf /e�E��1/2, where �E� is the mean electric
field seen by the electron. For the fastest electrons, this time
is very long and some of them can escape the front. How-
ever, slower electrons are falling back much quicker as they
see a higher mean electric field, close to Em. One can show
that for more than 60% of electrons, the return time is shorter
than 35 fs. That justifies our quasistationary approach for
realistic beam parameters.

B. Collisional processes behind the ionization front

Another important limitation of our model of the ioniza-
tion front is the hypothesis that 
�m 
 � 
�min
. Therefore, one

FIG. 1. Dependence of the front velocity ��a� solid line�, the front thickness ��a� dashed line�, the maximum ion density ��b� dashed line�,
and the maximum electric field ��b� solid line� on the beam density. The parameters are vmin=0.7c, vmax=0.9c, and �e=5 fs−1. The density
of the electron beam is varied from nb0=1018 to 1020 cm−3.
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should verify that the potential drop in the beam body is
sufficiently small. According to the Poisson equation �10�,
the electric field behind the front drops down to about half its
maximum Em and then the field ionization stops and the ion
density saturates at the level nim� �0�
2nim� . Such a field will
provide a very large potential drop as the beam length is
much larger than the front thickness. However, the ionization
process does not stop behind the ionization front. The joule
dissipation behind the front leads to electron heating and
then the collisional ionization takes place.

The electric field, the electron temperature, and the ion-
ization level can be found using a quasistationary model
based on two assumptions: �i� The current neutralization, jb
+ je�0, is established immediately after the ionization front
and �ii� the joule heating is equilibrated by the collisional
ionization

Ce
�Te

�t
= jeE − �iUi

�ni

�t
� 0, �23�

where Ce is the electron heat capacity, the coefficient
�i�2–5 accounts for additional energy losses in inelastic
collisions �25�, and je=−e2neE /m�e is the return current fol-
lowing from the equation of electron mobility �9�. The elec-
tron density is defined by the quasineutrality condition, ne
�ni, and the collisional ionization �24�

�ne

�t
= �cine, where �ci � na	ci

�Ui/me exp�− Ui/Te� .

�24�

The collision ionization cross section 	ci was discussed in
Sec. II A 2, Eq. �2�. This formula is valid for Te�Ui where
the ionization probability is an exponential function of the
electron temperature. The three-body recombination, accord-
ing to Ref. �24�, depends on the electron density and tem-
perature as ne

2Te
−9/2. It can be neglected for electron tempera-

tures above 1 eV and on the time scale smaller than a few ps,
in which we are interested here.

An approximate solution to Eqs. �23� and �24� is rather
straightforward. Supposing that the overall potential drop in
the beam tail is small, 
�m 
 � 
�min
, the beam current is
constant. Then Eq. �23� provides a relation between the elec-
tron temperature and the density: �ci�Te��me�ejb

2 /e2ne
2�Ui,

while Eq. �24� provides the spatial distribution of the plasma
density. Supposing that the density right behind the ioniza-
tion front �x=xf� is known, one obtains

ni�x� ��ni max
2 +

jb
2me�e

e2�Uiv f
�xf − x� . �25�

The second term in this equation, which accounts
for the collisional ionization, typically dominates. This
means that the plasma density increases as the square root
of the distance from the front and consequently the electric
field decreases as the square root of that distance. In particu-
lar, in the case of a high current electron beam, the
electric field in the beam tail can be estimated as eE
��me�e�Uiv f / �xf −x� and consequently the potential drop is
e
m�−2�me�e�Uiv fxf. This estimate allows us also to write

down the condition of applicability of our model,

2�me�e�Uiv fxf � mec
2��max − 1� , �26�

which is also the condition of efficient electron beam trans-
port across the dielectric target. Otherwise, this condition
could be considered as an estimate of the beam propagation
length in dielectrics.

From Eqs. �23� and �25�, one finds the temperature varia-
tion in the beam tail

Te�x� 

Ui

ln„�Ui/mena	ci�xf − x�/v f…
. �27�

As 	ci is about 10−16–10−17 cm2, the logarithm is larger than
1 and therefore Te�Ui. It slowly decreases from the front xf
to the source x=0. This formula confirms the hypothesis of
weak temperature variation used in Eq. �23�. The tempera-
ture decrease is a consequence of increasing electron density.
The joule heating is decreasing and more energy is spent for
the collisional ionization. The electron temperature will in-
crease again as far as the ionization is completed. Numerical
simulations presented below demonstrate the square root
beam density dependence in agreement with Eq. �25�.

The energy dissipation, similar to Eq. �22�, contains two
terms related to the electron ionization and heating

Wbt = ni�0�v f��iUi + Te�0�� , �28�

where ni�0� and Te�0� are the electron density and tempera-
ture at the beam source. As ni�0��ni max, the electron beam
energy dissipation occurs mainly in the beam body and the
energy is spent mostly for the ionization. In the case of short
electron beams where ni�0� is less than 10 times ni max, the
energy dissipation in the front could be dominant.

C. Two-stream instability

The stationary solution described above is strictly speak-
ing unstable. Some of instabilities lead to the beam filamen-
tation, either due to the magnetic field excitation �7� or due
to the corrugations of the ionization front �9�. They could be
seen only in two- or three-dimensional models. The only
instability which might be excited in one spatial dimension is
the two-stream instability related to the excitation of the
plasma waves in the body of the electron beam. This insta-
bility was observed in our numerical simulations and it en-
hances the energy losses of the beam.

The time of the beam propagation is rather short and only
very quickly growing instability can be excited. Then the
beam energy spreading and the electron thermal motion in
plasma can be neglected and the dispersion equation for the
two-stream instability follows from the continuity equations
for both electron species, their equations of motion, and from
the Poisson equation

1 −
�pb

2

�b
3�� − kxv f�2 −

�pe
2

��� + i�e�
= 0, �29�

where �pb,pe
2 =e2nb,e /�0me are the plasma frequencies of the

beam and the cold electrons. An unstable solution can be
found near the plasma resonance with the beam mode: �
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��pe�kresv f. In the absence of electron collisions the maxi-
mum growth rate for the two-stream instability is well
known �26�

Im �max = �ts � 2−4/3�3��pb
2 �pe�1/3� f

−1. �30�

The electron collisions have to be accounted for if �e��ts.
They decrease the growth rate but do not suppress the insta-
bility. The maximum growth rate then becomes Im �max

�ts��ts /�e�1/2. Figure 2 shows the dependence of the maxi-
mum instability growth rate on the beam density found from
the numerical solution of the dispersion equation for the pa-
rameters corresponding to our numerical simulations. The
growth rate increases as nb

3/4. This dependence agrees with
the analytical estimate Im �max�nb

1/2ne
1/4 if one recalls the

fact that ne�nb, according to Eq. �25�.
These formulas for the instability growth rate are valid if

the beam velocity spread is sufficiently small, Im �max/�pe
��v /v f. In the opposite case the instability develops in the
kinetic regime, the growth rate is much smaller, and it is not
interesting for our applications.

The instability might produce a significant energy dissipa-
tion if the beam length is large, Im �max�v f /xf, and it has
enough time to grow. Then the energy losses associated with

the two-stream instability, � 1
2�e�0�Ep

2�, can be estimated
similar to the previous cases. The plasma wave electric field
in the instability saturated state follows from the electron
beam trapping condition, Im �max��eEpkres /me� f

3�1/2. In par-
ticular, in the collisional regime, �e��ts, the saturated elec-
tric field reads Ep� jb /�0�e. Then the energy dissipation rate
due to the two-stream collisional instability can be estimated
as

Wts 
 jb
2/�0�e. �31�

For parameters such as in Fig. 2, the condition of the insta-
bility excitation is satisfied and it is an important mechanism
of the energy dissipation.

IV. RESULTS AND DISCUSSIONS

We present here the results of our simulations of the rela-
tivistic electron beam propagation in a plastic target and their
interpretations. The beam is 8 �m long and it consists of
electrons with velocities uniformly distributed between 0.7
and 0.9 speed of light. The beam comes from an aluminum
target considered as a source region and enters the initially
neutral plastic �polyethylene� target. The density of the beam
is varied between 1018 cm−3 and 1020 cm−3. Our objective
here is to study the dependence on the beam density of the
ionization front velocity, the dissipation of the beam energy,
and the plasma parameters behind the beam.

A. Characteristics of the beam and dependencies
on the beam density

1. Ionization process

The ionization process, which takes place in the plastic
target during the propagation of the relativistic electron
beam, is demonstrated in Fig. 3 at the simulation time 74 fs
when the whole beam is already inside the plastic, which
begins at 8 �m. The electric field, black curve in panel �a�,
grows rapidly at the head of the beam. According to Eq. �16�,
the growth becomes steeper as the beam density increases.

FIG. 2. Dependence of the maximum of the two-stream insta-
bility growth rate, Im �max in s−1, on the beam density nb in cm−3

for the electron-atom collision frequency �e=5 fs−1.

FIG. 3. Demonstration of the ionization processes. The relativistic electron beam with the density 1019 cm−3 propagates from the left and
the snapshot is taken in the time 74 fs. All curves are normalized to the maximum values. In panel �a�, the electric field produced by the beam
is plotted in black and its maximum is 28 kV/�m, the average kinetic energy of cold electrons is gray, and its maximum is 17.5 eV. In panel
�b�, the total number of cold electrons is black with the maximum 1.4�1022 cm−3. The bold light gray curve demonstrates the density of
electrons produced by field ionization, while the thinner dark gray curve demonstrates the density of electrons produced by collisional
ionization by the return current electrons. Both these densities are normalized to the total cold electron density.
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Once the field reaches the value of about 20 kV/�m, the
field ionization, bold gray curve in panel �b�, starts and the
field growth slows down, until it stops. Depending on the
beam density, the maximum field in the ionization front is
between 23 kV/�m and 38 kV/�m, which agrees well with
the analytical results in Fig. 1. This is less than 10% of the
atomic field. More than 100 new electrons per one beam
electron are produced by the field ionization; see Fig. 1.
These new electrons are accelerated by the electric field and
neutralize the beam current according to Eq. �13�. Then the
electric field drops down and the field ionization stops. Col-
lisions of newborn cold electrons play a very important role
behind the beam front. It was checked in a special run that if
plasma is considered collisionless, the electric field drops
down to zero or even changes its sign and starts to oscillate.
This is the process of the plasma wake formation behind the
electron beam. It operates in a low density plasma but it is
suppressed in solid targets because of their high collisional-
ity.

While neutralizing the beam current, cold electrons rap-
idly gain kinetic energy higher than the ionization potential
and start to ionize the neutral atoms behind the front. The
collisional ionization frequency for an electron with kinetic
energy of tens of eV is very high, of the order of several fs−1.
Therefore, the collisional ionization by plasma electrons, thin
gray curve in Fig. 3�b�, sets up almost immediately after the
field ionization. The collisional ionization process is so im-
portant that at the end of the ionization front the total cold
electron density, black curve in Fig. 3�b�, is already doubled,
compared with the cold electron density produced just by the
field ionization. Moreover, the cold electron density evolu-
tion in the beam body confirms the square root behavior
found in Eq. �25�.

After the initial stage of rapid ionization, the resistivity of
plasma drops down and correspondingly the electric field
needed for the current neutralization inside the beam is low,
about 6 kV/�m. The temperature of cold electrons decreases
to 7 eV, below the ionization potential, gray curve in Fig.
3�a�, and the collisional ionization rate decreases. Neverthe-
less, the ionization behind the ionization front persists, the
density of cold electrons increases, and the resistivity de-
creases a few times. Finally, behind the beam, the electric
field drops down to zero, as the current density of the beam

has been neutralized, and both the heating of plasma and the
further increase of number of cold electrons stop there.

The density of the new free electrons produced by the
electric field ionization is approximately 10% of the total
density of new electrons at the tail of the beam for all three
beam densities. The electric field ionization dominates the
collisional one in the head of the beam confirming the hy-
pothesis of Sec. III A. It defines the velocity of ionization
front. However, the collisional ionization by the return cur-
rent takes place in the whole region behind the ionization
front and consequently produces from 80% to 90% of free
electrons.

2. Dependence on the beam density

When comparing the electric field induced by the beam in
the plastic target, it is observed in Fig. 4�a� that with the
decrease of the beam density, the maximum electric field in
the ionization front also decreases, while the thickness of the
ionization front increases. This is in agreement with the ana-
lytic model described by Eqs. �16� and �21� and shown in
Fig. 1. A low amplitude of the electric field implies a low
field ionization rate and therefore the thickness of the ioniza-
tion front must be bigger to provide the field with more space
for ionization and production of enough new cold electrons.
For all three beam densities, a distinct change in the slope of
the cold electron density is observed just behind the ioniza-
tion front. It corresponds to the switch from electric field to
collisional ionization.

The position of the ionization front, in Fig. 4�a�, depends
on the beam density. This is due to the dependence of the
ionization front velocity, v f, on the beam density, demon-
strated in Fig. 1. The front velocity is smaller than the veloc-
ity of fastest beam electrons. It can be defined as the mean
velocity of the beam electrons inside the strongest field re-
gion of the ionization front. The number of fast electrons at
the head of the beam creating the strong field, which ionizes
the matter, depends weakly on the beam density. Therefore,
when the density is lower, the velocity distribution of the
beam electrons inside the ionization front contains more
slower electrons, and the propagation of the ionization front
is correspondingly slower.

For the beam densities 1018, 1019, and 1020 cm−3, the den-
sities of cold electrons behind the beam are about 1700

FIG. 4. Comparison of �a� the electric fields and �b� the cold electron densities produced by the field and the avalanche ionization for the
relativistic electron beams with densities 1018, 1019, and 1020 cm−3 at the time 74 fs.
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times, 1400 times, and 1000 times the beam density, respec-
tively; see Fig. 4�b�. We must point out that the cold electron
density for the beam density 1020 cm−3 could be even higher
if the secondary ionization will be allowed in the model.
However, we do not expect any dramatic change in the re-
sults. Even if the second outermost shell of carbon will be
completely ionized, the cold electron density would increase
only by 30%.

3. Two-stream instability

The electric field presented in Fig. 4�a� was smoothed
over an interval of about 0.1 �m. For the beam densities
1018 and 1019 cm−3, the nonaveraged field is similar but more
noisy. For the beam density 1020 cm−3, the average field is
accompanied by regular oscillations demonstrated in Fig. 5.
Their wavelength is about 70 nm and their amplitude is com-
parable with the electric field in the ionization front. This
oscillating field is due to the two-stream instability. Its maxi-
mum growth rate �30� corresponds to the electron plasma
waves with the phase velocity equal to the velocity of the
beam �pe/kres�v f; see Fig. 2. The frequency of the oscillat-
ing field calculated from the simulation data is about

18.5 fs−1, which agrees reasonably well with the electron
plasma frequency that is about 18 fs−1.

The maximum growth rate of the two-stream instability
increases with the plasma density and in the case of the beam
density 1020 cm−3, the growth rate can be as high as Im �
�1 fs−1. It is comparable to the collisional frequency of cold
electrons which is also of the order of 1 fs−1. For the lower
beam densities 1019 and 1018 cm−3, the two-stream instability
was not observed. The growth rates are 3.3 and 10 times
smaller, respectively, in these two cases and it has no time to
develop during the simulation. Also, the instability growth
rate decreases in later times because of beam energy losses.

4. Heating of thermal electrons

The average drift velocity of cold electrons streaming
against the beam and their average kinetic energy are pre-
sented in Fig. 6. In the region behind the electron beam,
where the average velocity is zero, the average energy cor-
responds to the plasma temperature. The drift velocity attains
its maximum in or slightly behind the ionization front and
then it gradually decreases to zero. There is only a small
difference in the return current drift velocity for the different
beam densities. The higher current needed to neutralize the
beam with higher density is therefore associated with higher
cold electron density.

The average cold electron energy also attains the maxi-
mum in the ionization front but we recall that the number of
cold electrons is strongly increasing behind this point due to
collisional ionization. Then the kinetic energy of electrons
decreases below the ionization potential and it remains at this
level throughout the beam. The case of the beam density
1020 cm−3 is an exception. Here additional heating at the end
and behind the beam is due to the two-stream instability.

The energy distribution function of cold electrons is
shown in more detail in Fig. 7 for the lowest and the highest
beam density at the simulation time 74 fs. The case of the
beam density 1019 cm−3 is very similar to the case of the
beam density 1018 cm−3. The tail of the beam is at the spatial
position of about 16 �m and the distribution of cold elec-
trons behind the beam is almost Maxwellian for the beam
densities 1018 and 1019 cm−3. It is established due to the elas-
tic and ionizing collisions. For the beam density 1020 cm−3,

FIG. 6. �a� Average cold electron drift velocity in the direction opposite to the beam propagation and �b� the average cold electron
energies at the time 74 fs. The beam is propagating from the left, the plastic part of the target begins at 8 �m, and the end of the beam is
at about 16 �m.

FIG. 5. Details of the oscillating electric field from Fig. 4�a�,
which is observed during the propagation of the beam with the
density 1020 cm−3. The wavelength of the oscillations is about
70 nm and they are explained by the two-stream instability.
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the distribution function demonstrates a high energy tail re-
lated to acceleration of plasma electrons in the electric field
generated by the two-stream instability.

B. Temporal evolution of the beam and plasma parameters

The simulation results presented above at the time of
74 fs demonstrate general characteristics of the beam propa-
gation. The temporal evolution of the average beam and
plasma parameters is shown in Fig. 8. The simulation results
�solid lines with markers� are compared with the results of
the analytical model �dashed lines�. Although the qualitative
behavior is similar, there are some evident quantitative dif-
ferences which are explained below.

The analytical approach assumes a stationary situation
where the beam has already evolved so that only the fastest
electrons can penetrate the peak field and the fast electrons
that lose their kinetic energy in the ionization front are al-
ways replaced by new fresh ones. In the simulation, there are
electrons from the whole range of velocities at the head of
the beam initially. The fastest ones propagate in front of the
field and do not lose almost any energy. The spatial profile of
the beam density is smoothed, linearly increasing from zero
to the maximum density on the distance of 1 �m, at the
beginning of the simulation. Also, in the simulation, the
source of fastest electrons in the beam is not infinite and the
energy losses play an important role on the longer time
scales.

1. Temporal evolution of the average characteristics

The maximum electric field in the ionization front, Fig.
8�a�, increases with the beam density and, in the simulation,

it remains almost constant during the whole time. It agrees
rather well with the predictions of the analytical model. The
thickness of the ionization front presented in panel �b� was
measured from the absolute head of the beam to the point
where the electric field attains its maximum. The initial front
thickness for the beam densities 1019 and 1020 cm−3 agrees
well in the simulation and in the analytical approach. For the
beam density 1018 cm−3, the analytical model overestimates
the thickness two times because it neglects the collisional
ionization which contributes already in the ionization front.
The thickness of the ionization front is observed to grow
with time. This is due to precursor electrons that propagate at
the beam head in front of the electric field. These electrons
keep, during the whole simulation, approximately their initial
velocity which is close to 0.9 velocity of light. The maxi-
mum electric field propagates, on the other hand, with the
front velocity and therefore the thickness of the ionization
front increases with time.

In the simulation, the front velocity, Fig. 8�c�, was calcu-
lated from the positions of the maxima of the electric field in
two different times. For the two higher beam densities, the
field peaks are very narrow and therefore the front velocity is
calculated with enough precision using this approach. For the
lowest beam density, however, the region around the electric
field maximum is significantly wider and therefore the veloc-
ity is calculated with less precision and there is an error of
approximately 2�106 m/s. Another possible approach is to
calculate the average front velocity from the widening of the
ionization front. As stated previously, the ionization front
widens due to the difference in the velocity of the precursor
electrons �0.9 velocity of light� and the peak field �the front

FIG. 7. �Color online� Energy distribution of cold electrons generated by the field and the collisional ionization in a plastic target at the
simulation time 74 fs for the beam densities �a� 1018 cm−3 and �b� 1020 cm−3. The plots are normalized to the maximum values.

FIG. 8. Temporal evolution of �a� the peak electric field induced by the beams propagating inside the plastic target, �b� the thickness, and
�c� the velocity of the ionization front. The ionization front thickness is measured from the position of the beginning of the beam to the
position of the field maximum. The front velocity is calculated from the positions of the field maxima in two adjacent times. Solid lines with
markers represent numerical results; dashed lines with the corresponding markers represent the values given by the analytical model.
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velocity�. With this approach, the average front velocity at
the time between 20 fs and 160 fs is 2.2�108 m/s, 2.36
�108 m/s, and 2.43�108 m/s for the beam densities
1018 cm−3, 1019 cm−3, and 1020 cm−3, respectively.

The initial values of the front velocity in the simulations
are in reasonable agreement with the ones calculated analyti-
cally. With time, however, the front velocity in the simula-
tion decreases and the beam propagation is slower. The de-
crease in the front velocity is associated with the decreasing
number of the fastest electrons in the beam and hence also
with the dissipation of the beam energy. The temporal evo-
lution of the beam velocity distribution function is demon-
strated in Fig. 9.

2. Beam velocity distribution

The evolution of the beam velocity distribution with time
is the strongest for the beam density 1018 cm−3; see Fig. 9�a�.
As in the beginning of the simulation, electrons from the
whole range of velocities, i.e., from 0.7 to 0.9 velocity of
light, are at the head of the beam in the ionization front;
these electrons are losing energy almost equally. Later in
time, however, preferentially the fastest electrons are slowed
down, as they are mostly the ones which propagate faster
than the ionization front and therefore they can get into the

regions where the field is the highest. At the simulation time
160 fs, the precursor electrons are also clearly seen here.
They are not stopped in the ionization front and propagate
freely in front of it.

The evolution of the beam velocity distribution for the
higher beam density 1020 cm−3, panel �b�, exhibits similar
features, however, the changes in the distribution are much
weaker. There are two reasons for this slower evolution.
First, when integrating the electric field in the ionization
front for different beam densities, it was found that the lower
the beam density, the higher the electric potential. The sec-
ond reason is that the higher the front velocity, the shorter the
time needed for an electron to cross the front. Both these
factors together result in the energy losses that are more sig-
nificant at lower beam densities. Therefore, when comparing
the distributions in Fig. 9 for the different beam densities, not
only the numbers of decelerated electrons but also the veloci-
ties of the slowest electrons are different.

3. Beam current evolution and the current neutralization

The evolution of the beam current density is demonstrated
in Fig. 10. At simulation time 80 fs, the return current is also
shown. The current neutralization is quite good except the
smallest density and the front region. The temporal evolution

FIG. 10. Temporal evolution of the beam current density for the beam densities �a� 1018 cm−3 and �b� 1020 cm−3. The return current is
also shown at the time 80 fs to demonstrate the current neutralization. The beam electrons that are slowed down in the peak field in the
ionization front appear inside the beam and increase its current density. Precursor electrons are seen for the beam density 1018 cm−3.

FIG. 9. Temporal evolution of beam velocity distribution function for the beam densities �a� 1018 cm−3 and �b� 1020 cm−3. The distri-
bution is initially uniform and all electrons are equally decelerated. Further in time, only faster electrons are at the head of the beam where
the electric field is higher and they are decelerated more strongly.
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of the beam current density is due to two effects: The ballis-
tic evolution and the electric fields. At the head of the beam
in the ionization front, the fast electrons are decelerated be-
low the average velocity of the beam and they are caught up
by the rest of the beam, increasing the beam density behind
the ionization front. As the deceleration of the beam elec-
trons is the strongest for the lowest beam density 1018 cm−3,
the beam current density behind the ionization front is in-
creased in this case by almost 40%. In later time, however,
the ballistic spreading predominates and the current density
decreases inside the whole beam.

In Fig. 10�a�, the precursor electrons in the time 160 fs
are clearly distinguishable. The electric field induced by
these electrons is independent of the beam density and its
value in this time is about 9 kV/�m. The average separation
of the precursor electrons from the region, where the
quasineutrality is restored, is approximately half the differ-
ence between the initial thickness of the ionization front and
the thickness in the time 160 fs, i.e. 3.6 �m for the beam
density 1018 cm−3. Substituting this thickness and the electric
field stated above into the Poisson equation �7� one can es-
timate the average density of the precursor electrons. For the
beam density 1018 cm−3, it is about 14% of the initial beam
density, while for the beam densities 1019 cm−3 and
1020 cm−3, it is only 2.1% and 0.2%, respectively. Therefore,
the current of precursor electrons is limited by the value of
�1 GA/cm2.

4. Energy dissipation

The distribution of the beam electrons in the phase space
is demonstrated in Fig. 11 at the simulation time 160 fs for
all three beam densities. The figure in each panel covers the
same area and the color represents the same number of simu-
lation electrons in all four panels. The horizontal line in pan-

els �b�, �c�, and �d� represents the actual front velocity, while
the vertical line denotes the position of the peak electric field
in the ionization front. In panel �a�, the initial beam distribu-
tion is plotted for comparison. In this panel, the whole beam
is in aluminum layer and its distribution is uniform with only
slightly smoothed borders. At the time 160 fs, the rhomboid-
like shape of the distribution is due to the ballistic evolution.
Fast electrons with the velocity higher than the front velocity
penetrate into the ionization front and are slowed down by
the electric field. They leave the front and are caught up by
the beam again. They are accumulated behind the ionization
front and form a peak which is seen in the current density
plots in Fig. 10. In all three panels, the precursor electrons
are clearly seen.

The lowest beam density, 1018 cm−3, corresponds to the
highest energy dissipation. At the time 160 fs, there are no
more electrons with the velocity 0.9 velocity of light in this
distribution and therefore the velocity of the ionization front
is already relatively low. On the other hand, as the front
velocity is the lowest in this case during the whole simula-
tion, the fastest electrons get into the ionization front from
the beam earlier, they propagate with the front for a longer
time, and their energy losses are the highest. For the highest
beam density, 1020 cm−3, the tail of the beam distribution is
also significantly disturbed. This is the result of the two-
stream instability.

In Fig. 12, the energy losses of the beams are demon-
strated against the propagation distance measured at the po-
sition of the ionization front. The beam with the density
1018 cm−3 loses about 50% of its total energy on the distance
of 40 �m. This explains why the front velocity of this beam
decreases significantly. The energy lost by the beam is trans-
ferred into the kinetic energy of cold electrons and as long as
there are enough neutral atoms in the target, this energy is
used for additional ionization.

FIG. 11. �Color online� Distribution of the beam electrons in the phase space at �a� the initial moment and at the time 148 fs for the beam
densities �b� 1018 cm−3, �c� 1019 cm−3, and �d� 1020 cm−3. Colors represent the normalized number of beam electrons and the figures in each
panel cover equal areas. The velocity is normalized to the velocity of light. The horizontal lines represent the ionization front velocity; the
vertical lines represent the position of the ionization front.
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As the electric field behind the ionization front is approxi-
mately the same for all three beam densities, Fig. 4 �except
for the highest beam density where the two-stream instability
is excited�, the field inside the ionization front is responsible
for different energy losses. From the energy losses of the
beam in Fig. 12, we can calculate the average stopping
power acting on a beam electron. It is about 4.9, 3.6, and
2.4 keV/�m for the beam densities going up from 1018 to
1020 cm−3. This is more than ten times larger than the clas-
sical stopping power of a single electron due to the binary
collisions, which is less than 0.3 keV/�m. It is a clear mani-
festation of the collective effects.

C. Scaling of the beam propagation characteristics

The velocity distribution of the beam electrons chosen
here allows one to see clearly the various physical processes.
However, it is not as relativistic as the ones obtained nowa-
days in high intensity laser target interaction experiments.
The energy flux corresponding to the highest density beam
here is only about 1017 W/cm2. However, the calculations
with more energetic uniform beam distributions �with veloci-
ties between 0.9 and 0.99 velocity of light� confirm that the
physical processes are similar to the ones described above.
Only the velocity of the ionization front is higher and the
energy losses of the beam do not significantly influence its
propagation on the temporal scales which we are able to
simulate.

Finally, we want to point out that our simulations are cur-
rently limited to the range of the beam current densities 4–
400 GA/cm2 used here. The lower or higher beam densities
can be only accessed by the analytical model at the moment.
In particular, for higher densities one or two more electrons
per atom will be liberated due the collisional ionization. Be-
cause of increase in the ionization potential, the cold electron
temperature will increase, which will lower the collisionality.
Moreover, as the additional ionization will be more difficult,
the electric field behind the ionization front may be higher
and this will increase the energy losses of the beam as well.
Finally, the two-stream instability �as well as other multidi-
mensional instabilities� will be excited more strongly in-

creasing even more the stopping power. For the lower elec-
tron current beam densities, the electric field ionization will
not provide a sufficient number of cold electrons for the re-
turn current and the stopping of the beam by the electric field
will be very strong.

V. CONCLUSIONS

We have presented a theoretical model and numerical
simulations describing the transport of a high current relativ-
istic electron beam in dielectric targets. Our analytical model
for the ionization front is based on the approach described in
Refs. �9,11�, but the initial velocity distribution function for
the beam electrons is different. Our model takes into account
the processes of the field ionization in the head of the elec-
tron beam and the subsequent collisional ionization of the
insulator by secondary electrons. The processes of current
and charge neutralization take place in the ionization front
and its thickness is adjusted self-consistently. The heating of
the plasma electrons by the return current is identified as a
major source of the secondary ionization and the beam en-
ergy losses. The theoretical model has been compared with a
simulation code based on the PIC algorithm. It includes the
ionization processes induced by the self-consistent electric
field and the secondary plasma electrons. It also includes the
elastic electron-atom and Coulomb collisions with realistic
cross sections. Simulations show that the self-consistent
electric field in the beam head plays an important role in the
fast electron transport, defining the average beam velocity
and providing the initial population of plasma electrons. Its
amplitude is saturated at the level of about 10% of the atomic
electric field and it never provides a complete ionization. The
density of plasma electrons created in the ionization front is
typically 100 times the electron beam density. The collisional
ionization takes place mainly in the beam body where the
electric field is strongly reduced.

The numerical simulations and the analytical model show
that the average electron beam velocity is an increasing func-
tion of the beam current density for the currents larger than a
few tens of GA/cm2. Such a dependence v f�jb� may cause a
filamentation instability at the ionization front predicted in
�9� and already observed in the experiment �10�. This two-
dimensional effect is not described within our one-
dimensional model, which nevertheless demonstrated an im-
portant effect of excitation of a large-amplitude plasma wave
due to the two stream beam-plasma instability. It is excited at
the current densities �400 GA/cm2 and it enhances the
beam dissipation rate and leads to acceleration of plasma
electrons to keV energies.

The simulations demonstrate a complicated beam electron
dynamics related to the ionization process in the beam head.
The fastest electrons, which are moving with the velocities
higher than the ionization front, are entering the front and
losing a significant part of their energy to support the strong
electrostatic field and the ionization process. Therefore, the
efficient beam propagation is maintained as long as the elec-
tron beam can supply enough of these energetic electrons.
For an electron beam of a finite length the propagation would
be strongly inhibited at the moment when all energetic elec-

FIG. 12. Electron beam energy losses �in percents of the initial
energy� versus the propagation distance. Initial energy of the beam
decreases almost linearly in all three cases and the energy dissipa-
tion is stronger the lower the beam density. The beam with the
density 1018 cm−3 loses 50% of energy on the distance of 40 �m.
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trons will cross the front. This effect can be used to control
the propagation length and the deposition rate of high current
electron beams.

Finally, a significant electron heating takes place in the
beam tail behind the ionization front. The level of electron
plasma temperature is controlled by the collisional ionization
and it is kept below the ionization potential as long as the
ionization is not completed. This process could play an im-
portant role also in metallic target providing an increased
ionization level for higher beam currents. Because of com-
putational limitations, our numerical simulations were re-
stricted here to relatively low energy fluxes below
1018 W/cm2, where the energy losses are relatively high.
This allowed us to compare the numerical results with the
analytical predictions for the realistic current densities at a
relatively short propagation distance. However, the analytical
model is valid for much higher energy fluxes and it predicts
a decrease of the beam energy losses at higher intensities.
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APPENDIX: ELASTIC ELECTRON-ATOM AND
COULOMB COLLISIONS

Random sampling of the deflection angle 
 for the elastic
electron-atom collisions from the differential cross section
�3� was performed with a random number R uniformly dis-
tributed between 0 and 1 using the formula

cos 
 = �−1�� + 2 − 2�1 + ��R� . �A1�

Similarly, for the Coulomb collisions, the deflection angle
was sampled from the distribution �4� as follows:

cos 
 = 1 + A−1 ln R . �A2�

The azimuthal angle of the collision plane � is uniformly
distributed between 0 and 2� for both types of collisions.

Supposing that the velocities of particles before the colli-
sion are v1 and v2, the post-collision velocities for the
electron-electron collision were calculated according to the
formulas �20�

v1,2� = v1,2 � �g�1 − cos 
� + h sin 
�/2, �A3�

where g=v1−v2 is the relative velocity. The vector h is de-
signed to maintain the energy conservation. Its Cartesian
components are

hx = g�cos � ,

hy = − �gxgycos � + ggzsin ��/g�,

hz = − �gxgzcos � − ggysin ��/g�, �A4�

where g�= �gy
2+gz

2�1/2. For electron-atom and electron-ion
collisions, the velocity of atoms and ions was set to zero and
their mass to infinity. Correspondingly, the postcollision
electron velocity was calculated from Eq. �A3� by setting
v2=0 and g=v1.
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